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The micro-electromechanical systems (MEMS) industry has grown incredibly fast over the past
few years, due to the irresistible character and properties of MEMS. MEMS devices have been
widely used in various fields such as aerospace, microelectronics, and the automobile industry.
Increasing prominence is given to the development and research of MEMS; this is largely driven
by the market requirements.

Multi-physics coupled fields are often present in MEMS. This makes the modeling and analysis of
such devices difficult and sometimes costly. The coupling between electrostatic and mechanical
fields in MEMS is one of the most common and fundamental phenomena in MEMS; it is this
configuration that is studied in this thesis. The following issues are addressed:

1. Due to the complexity in the structural geometry, as well as the difficulty to analyze the be-
havior in the presence of coupled fields, simple analytical solutions are normally not avail-
able for MEMS. The finite element method (FEM) is therefore used to model electrostatic-
mechanical coupled MEMS. In this thesis, this avenue is followed.

2. In order to capture the configuration of the system accurately, with relatively little compu-
tational effort, a geometric non-linear mixed assumed stress element is developed and used
in the FE analyses. It is shown that the developed geometrically non-linear mixed assumed
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stress element can produce an accuracy level comparable to that of the Q8 element, while
the number of the degrees of freedom is that of the Q4 element.

3. Selected algorithms for solving highly non-linear coupled systems are evaluated. It is con-
cluded that the simple, accurate and quadratic convergent Newton-Raphson algorithm re-
mains best. To reduce the single most frustrating disadvantage of the Newton method,
namely the computational cost of constructing the gradients, analytical gradients are evalu-
ated and implemented. It is shown the CPU time is significantly reduced when the analytical
gradients are used.

4. Finally, a practical engineering MEMS problem is studied. The developed geometric non-
linear mixed element is used to model the structural part of a fixed-fixed beam that expe-
riences large axial stress due to an applied electrostatic force. The Newton method with
analytical gradients is used to solve this geometrically nonlinear coupled MEMS problem.
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Die mikro-elektromeganiese sisteem (MEMS) industrie het verbysterend vinnig oor die afgelope
paar jaar gegroei, as gevolg van die onweerstaanbare karakter en eienskappe van MEMS. MEMS
stelsels word wyd gebruik in verskeie velde soos lugvaart, mikro-elektronika, en die voertuig in-
dustrie. Toenemende aandag word aan die ontwikkeling van en navorsing in MEMS geskenk; dit
is tot ’n groot mate die gevolg van markverwante aanvraag.

Multi-fisika gekoppelde velde is baie keer aanwesig in MEMS. Dit maak die modelering en anali-
sering van sulke stelsels moeilik, en soms duur. Die koppeling tussen elektrostatiese en meganiese
velde in MEMS is een van die mees algemene en fundamentele eienskappe van MEMS; dit is
hierdie konfigurasie wat in hierdie tesis bestudeer word. Die volgende punte word aangespreek:

1. As gevolg van geometriese kompleksiteite, asook die moeilikheidsgraad geassosieer met die
aanwesigheid van gekoppelde velde, is eenvoudige analitiese oplossings vir MEMS gewoon-
lik nie beskikbaar nie. Die eindige element metode (EEM) word daarom baie keer gebruik
om elektrostaties-meganies gekoppelde MEMS te modelleer. In hierdie tesis word die EEM
dan ook gebruik.

2. Ten einde die konfigurasie van die stelsel akkuraat te beskryf, teen ’n relatief lae bereken-
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ingskoste, word ’n geometries nie-lineêre aangenome-spanningselement ontwikkel en ge-
bruik in die EE analises. Dit word aangetoon dat die akkuraatheid van die ontwikkelde
geometries nie-lineêre aangenome-spanningselement vergelykbaar is met die akkuraatheid
van die bekende Q8 element, terwyl die aantal vryheidsgrade natuurlik dieselfde is as vir die
bekende, goedkoper Q4 element.

3. Enkele algoritmes vir die oplos van hoogs nie-lineêre gekoppelde stelsels word geevalueer.
Dit word dan aangetoon dat die eenvoudige, akkurate en kwadraties konvergente Newton-
Raphson algoritme die beste vertoon. Om die mees frustrerende nadeel van die Newton
metode, naamlik die berekeningskoste geassosieer met die konstruksie van gradiënte, te
oorkom, word analitiese gradiënte geevalueer en geı̈mplementeer. Dit word aangetoon dat
die SVE tye aansienlik verminder indien analitiese gradiënte gebruik word.

4. Laastens word ’n praktiese ingenieurs MEMS probleem bestudeer. Die ontwikkelde geome-
tries nie-lineêre aangenome-spanningselement word gebruik om die strukturele deel van ’n
dubbel ingeklemde balk te modelleer, wat hoë aksiale spannings ondervind as gevolg van die
aanwending van ’n elektrostatiese kragveld. Die Newton metode met analitiese gradiënte
word gebruik om hierdie geometries nie-lineêr gekoppelde MEMS probleem mee op te los.
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Chapter 1

Introduction

1.1 MEMS and its components

Microelectromechanical systems or MEMS are typical components used within a microsystem. A
microsystem will typically comprise of components from one or more of three classes: microsen-
sors to detect changes in the system’s environment; an intelligent component that makes decisions
based on changes detected by the sensors; and microactuators, by which the system can perform
necessary actions to change its environment [1].

Currently, the intelligent component of the system would be implemented using microelectronic
components; this is a well established technology, and is not discussed in this thesis. Microme-
chanical devices such as microsensors and microactuators are introduced in the following.

A transducer is a device that converts one physical quantity to another [2]. The deformation of a
mechanical structure under an applied electrostatic field is one example. Sensors and actuators are
special types of transducers. In this thesis, a microsensor is a device that converts one physical
or chemical quantity to an electrical one, for processing by the microsystem [3]. An example
being to convert the air temperature to an electrical signal by using a thermo-couple. Similarly, a
microactuator is a device which converts an electrical quantity into a physical or chemical one in
a microsystem, e.g. the comb-drive actuator invented by Tang [4]. The main parameters useful to
describe an actuator are its force and its stroke.

There are various types of microsensors and microactuators distinguished by the physical quan-
tities involved: electrostatic (or electrodynamic), magnetic, piezoelectric, hydraulic, and thermal.
Of these, piezoelectric and hydraulic methods currently look promising, but the others also have
their place. Electrostatic actuation runs a close third, and is possibly the most common, e.g. comb
drives and wobble motors, and is a well developed method. Magnetic actuators usually require
relatively high currents (and high power), and on the microscopic scale, electrostatic actuation
methods usually offer better output per unit volume (the limit is somewhere in the region of going
from 1 cm cubed devices to a few mm cubed - depending on the application) [1]. Thermal actua-
tors also require relatively large amounts of electrical energy, and the heat generated also has to be
dissipated. Two MEMS examples are shown in Figure 1.1 and Figure 1.2.

There are different ways to design and analyze MEMS. Accurate modeling using a numerical
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Figure 1.1: SEM photographs of curved electrode actuators showing the entire curved electrode
actuator. The thin central beam is movable, being fixed only on it rightmost extreme [5].

Figure 1.2: Micrograph of the SPST switch developed at Hughes Research Laboratory [6, 7].

method (e.g. FEM or BEM) can be used to solve the partial differential equations that describe a
device in different physical domains. These simulation technologies try to give a complete view of
the MEMS design, which is material and process dependent, e.g. the nonlinearity that appear in the
system. Normally, these nonlinearities arise from two main effects: material nonlinearity, where
the relation between the strain and the stress is nonlinear; and geometric nonlinearity, where the
material is linear elastic but the relation between force and displacement of an element is nonlinear
[8]. The nonlinearities considered in this thesis is restricted to geometric nonlinearities.
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1.2 Motivation

The economic significance of MEMS to the world economy is increasing rapidly. A market survey
[9] in 2002 predicted that MEMS revenues in the year 2005 may exceed $50 billion [9]. The
development of MEMS technology allows us to have better tools to interact with the micro-world.
Actually, reduced mass and size allow placing the MEMS in places where a traditional system
won’t be able to fit [10]. The drive behind the industry is the reduction of the cost, size, and the
power consumption of the sensors and actuators, while retaining or improving their performance.
Currently, cheap and small MEMS sensors have many applications. Digital cameras for example
now use accelerometers to stabilize images, or to automatically find image orientation [11], and
accelerometers are also being used in new contact-less game controllers or mice [10].

Model development for electronic components has reached a state of maturity. However, there
is a lack of model development for micromechanical devices [12]. Usually, micromechanical
devices obey a complex set of equations that must account for the tight coupling of multiple energy
domains of the system.

Electrostatic microactuators are widely used in the realization of microsystems [13]. From the
design point of view, it is important to obtain an accurate prediction of the behavior of such devices.
This means that effective, efficient and robust simulation models are required. Analytical solutions
of the coupled electromechanical problem are available only in the case of very simple geometries
in small deflection conditions [14]. A more effective approach is the numerical model based, for
example, on the finite element method [15].

Large deflections or large axial stresses can arise in the electrostatic microactuators, which will
introduce geometrical non-linearity, in addition to the non-linearities that characterize the elec-
tromechanical coupling. This could significantly increase the computational complexity of the
problem.

It is the aim of this study to review, investigate and modify the entire procedure of analyzing
the electromechanical coupled system including element analysis, FEM modeling and algorithm
evaluation.

1.3 Objectives

The four objectives of this study are

1. to develop a geometrically nonlinear mixed assumed stress element,

2. to model electrostatic-mechanical coupled fields,

3. to solve the modeled non-linear systems, and

4. to apply the modified element and algorithm to an engineering problem.
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1.4 Thesis overview

The Chapters in this thesis are self-contained; each chapter has its own objective.

In Chapter 2, the basic governing equations involved in the multiphysics modeling are introduced.
In particular, the formulations involved in electro-mechanical coupled systems are examined. In
addition, a brief background and history of the development of MEMS is introduced.

In Chapter 3, a geometrically nonlinear mixed assumed stress element is derived. This element is
developed based on the linear 5β hybrid element. This chapter commences with the formulation
of a linear mixed assumed stress element. Then, the fundamental differences between linear and
geometrically nonlinear formulations are discussed in detail. With the strong form being devel-
oped, the finite element formulation for the geometrically nonlinear mixed assumed stress element
is proposed. With the patch test, the element is proved to be consistent. Additionally, with a few
commonly known numerical benchmark tests, the proposed element is proven to be computational
efficient and accuracy comparable.

In Chapter 4, electrostatic-mechanical coupled MEMS are studied. Due to the complexity of the
problem, FEM is used to model the coupled system. In order to solve the nonlinear coupled system
efficiently with Newton’s method, analytical gradients are derived so that the computational cost in
calculating the Newton’s step is significantly reduced. Besides Newton’s method with analytical
gradients, other methods for solving nonlinear systems are also introduced in comparison with
the proposed one. A few numerical results shows that Newton’s method with analytical gradients
is an efficient and accurate method to solve the electromechanical coupled system. Finally, the
geometrically nonlinear mixed assumed stress element developed in the previous Chapter is used
to model a geometrically nonlinear MEMS which is solved using the proposed method.

In Chapter 5, conclusions and recommendations are offered.

In the Appendices, intricate mathematical formulations that may distract from reading the main
chapters, are presented.
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Chapter 2

Formulation and background

2.1 Formulation of multiphysics (coupled-field modeling)

MEMS devices are mostly multiphysics coupled devices. The physical quantities involved in
MEMS may include electrostatic, magnetic, piezoelectric, hydraulic, thermal, and mechanical ef-
fects, etc.

Some of the frequently attributed meanings of the term multiphysics are: “multifield” to denote the
simultaneous excitation and response of the system by multiple physical fields and; “multidomain”
to denote the interaction among continuum representations of systems with drastically different
properties (e.g. fluid- structure interaction, moving solidification boundary problems, etc.) through
sharable boundaries.

A general formulation of a mathematical model describing the behavior of multiple interacting
continua under multifield conditions at a given length scale can be presented as the following sys-
tem of generally coupled equations

=di(m̂dj, n̂dj; ṁdj, ṅdj) = 0 in Ωd (2.1)

where i, j and d are the number of equations, the number of conjugate field pairs and the number of
domains respectively [16]. The operator =di (usually differential) expresses some conservation law
and is defined per equation per domain while it represents the nature of the behavior of the system
as defined by conjugate state variable pairs (m̂dj, n̂dj) and for some cases their time derivatives
(ṁdj, ṅdj). Since the presence of the differential operator =di in (2.1), it is usually difficult, if
possible, to get the direct analytical solutions. Therefore move advanced numerical methods such
as the finite element method are normally deployed in solving (2.1).

2.2 Electrostatic-mechanical coupled field

The key component of many modern MEMS is the simple idealized electrostatic device. In fact,
a scale effect is the reason why electrostatic forces, normally negligible at macroscopic level, can
prevail over other kinds of actuation (i.e. electromagnetic, piezoelectric) at the microscopic scale

5
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[17]. The electrostatic actuation uses the nature of electrostatic force provided by parallel plate
capacitor structures or comb-finger structures. The attractive and repulsive forces generated by
electric charge distribution are used to convert electrical to mechanical energy. The electrostatic
actuated devices (e.g., micromirror array, microswitch, scanner, microshutter, micromotor) are
widely used in varieties of fields. In Figure 2.1 different types of electrostatic actuators are shown
[10].

Figure 2.1: Different types of electrostatic actuators

When designing electro-mechanical actuators one typically applies a voltage to the undeformed
device. This induces charges on the surface of the conductors in the problem, and those charges
induce surface normal pressures over the device. We refer to these pressures as the electrostatic
load. The electrostatic load causes the device to deform. In general such deformation will lead to
reorganization of all surface charges (and thus pressures) on the device.

The simplicity and importance of this technique have inspired numerous researchers to study math-
ematical models of electrostatic-elastic interactions. The mathematical analysis of these systems
started in the late 1960s with the pioneering work of H. C. Nathanson and his coworkers [18]
who constructed and analyzed a mass-spring model of electrostatic actuation, and offered the first
theoretical explanation of pull-in instability.

Pull-in phenomenon is a discontinuity related to the interplay of the elastic and electrostatic forces
[19]. The pull-in instability in electrostatically actuated MEMS presents a ubiquitous challenge
in MEMS technology of great importance. The determination of the pull-in voltage and position
requires the solution of a coupled electrostatic-elastic system [20]. In this instability, when applied
voltages are increased beyond a critical value, there is no longer a steady-state configuration of
the device where mechanical members remain separate, i.e. the structure stiffness can no longer
balance the electrostatic force so that the structure just simply ‘collapses’.

Another issue associated with the analysis of MEMS is that a linear model is unsuitable for sim-
ulation of devices where the deflection is large or where large axial stress exists in the structure.
Geometrically nonlinear analysis is needed to model and analyze the system accurately. How-
ever the geometric non-linearities induced in addition to the non-linearities that characterize the
electromechanical coupling can increase the computational complexity of the problem [21].

For steady state (or quasi-static) electro-mechanical analysis, there are two main governing equa-
tions involved when solving the coupled fields. These are force equilibrium form continuum me-
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chanical analysis and Gauss’s law of electrostatics. These governing equations are expressed as

∇ · (O(∇u(x))) = 0 in Ωs (2.2)
∇ · (∇(V )) = 0 in Ωe (2.3)

where x is a point on the initial structure; u(x) is the displacement of that point from its initial
position; O is the nonlinear algebraic operator which relates the displacement gradient to the ma-
terial stresses; V is the scalar voltage; Ωs is the interior of the structure and Ωe is the interior of
the electrical field. The solution to the above governing equations must also satisfy the prescribed
boundary conditions, e.g. prescribed displacements, tractions, voltages or charge densities.

Due to the difficulty of solving the governing equations (2.2) and (2.3) directly, the steady-state
electrostatic-mechanical problem can be discretized using the finite element method. The coupled
system is described by a three-field formulation, where the structure is modeled by a finite element
model and the electrostatic pressure is predicted by a finite element discretization of the electro-
static field. A third field is introduced to describe the motion of the electrostatic mesh. In this
way, the structured electrostatic mesh generation can be done relatively easy. The advantages of
this approach have been illustrated in the context of aeroelasticity [22] and design optimization of
aeroelastic structures [23, 24].

2.3 Brief background of MEMS

Interest in the micromechanical world began in 1959, when Richard Feynman’s idea of operation
at the micro scale was partially realized with the introduction of silicon transistors and integrated
circuits (better known as microchips). Although microchips were developed in the 1970s, research
on micromechanical devices did not begin in earnest until the late 1980s, when fabrication tech-
niques used to make microchips were applied to making mechanical structures [25].

In the late 1980s, silicon very-large-scale-integrated (VLSI) design and manufacturing was devel-
oped for use in the field of MEMS [26]. Because micromechanics began with techniques used in
microchip manufacture, researchers used silicon and other microchip materials. Silicon devices
still dominate the MEMS arena because of extensive experience with its fabrication, but research
into using other materials such as glass and plastic has produced alternatives to silicon MEMS.

In the 1990s, much research has been done on micromachining. It was said to be the decade of
micromachining. Various manufacture and fabrication techniques such as Excimer laser and LIGA
[27] were developed to match the fast growing market of the MEMS. Micromachining has become
one of the constructional technologies of microengineering alongside microelectronics.

Miniaturization is often a most important driver behind MEMS development. The common per-
ception is that miniaturization reduces cost, by decreasing material consumption and allowing
batch fabrication, but an important collateral benefit is also in the increase of applicability [10].
The miniaturization of nearly all other types of devices and systems is arguably an even greater
opportunity for commercial profit and beneficial technological advances [28]. However, instead
of the traditional evolutionary engineering effort to reduce size and power while simultaneously
increasing the performance of such a diverse set of systems, the field of MEMS represents an
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effort to radically transform the scale, performance and cost of these systems by employing batch-
fabrication techniques and the economies of scale successfully exploited by the integrated circuit
(IC) industry [29].

Due to the enormous breadth and diversity of the devices and systems that are being miniaturized,
the acronym MEMS, introduced by Howe in 1989 [30], is not a particularly apt one (i.e., the field
is more than simply micro, electrical and mechanical systems). However, MEMS is used almost
universally to refer to the entire field [31]. Other names for this general field of miniaturization
include microsystems technology (MST), popular in Europe, and micromachines, popular in Asia.
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Chapter 3

Geometrically nonlinear mixed assumed
stress element

In order to capture the geometrically nonlinear effect that may arise in the simulation of MEMS ac-
curately and efficiently, a new geometrically nonlinear mixed assumed stress element is developed
in this chapter, similar to the well-known linear 5β element of Pian and Sumihara [32]. Similar
elements have been developed before, but the element presented here is particularly simple in its
formulation.

Here, a weighted-residual approach is used to formulate the element, since this easily relates to the
now well-known Tonti-diagrams.

A variational formulation is presented in References [33, 34]. The approach followed in this chap-
ter is simple, and is developed from first principles. Seemingly, it is easier understood and im-
plemented than the previous formulations. For the sake of numerical simplicity, only a 2-D plane
model is considered. The shell and solid versions of this element can be development in a similar
way as done for the 2-D shell; related references are References [35, 36]. Another comparable
element is the so-called superconvergent element proposed by Liu, Belytschko and Chen [37].
However, this element is inherently rank deficient, and also depends on a stabilization procedure.
The development herein was done independent of previous contributions.

3.1 Introduction

In linear elastostatics, membrane finite elements based on the Hellinger-Reissner two field prin-
ciple have for some time been an alternative to single field displacement based elements, derived
from the principle of potential energy.

On the one hand, the simple displacement based Q4 element, based on bilinear displacement inter-
polation functions, is notoriously inaccurate in bending dominated problems. On the other hand,
mixed elements, based on independent stress and displacement interpolations, perform very well
in bending dominated situations. A typical example being the 5β two field element proposed by
Pian and Sumihara [32]. This element is arguably the most popular two field element available in
commercial finite element programs today.

9
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Most certainly, higher order displacement based elements are viable alternatives to two field mixed
elements in bending dominated problems; the most popular example of such an element is probably
the well-known Q8 serendipity element, which is based on bi-quadratic displacement interpolation
functions. However, while an increase in polynomial interpolation order in displacement based
elements has certain advantages over low order elements based on two field principles, there are
also disadvantages. Advantages of Q8 over 5β for example include the conceptual simplicity of
the Q8 element, and the fact that no local element inversions are required.

Disadvantages of Q8, when compared to 5β, include the very fact that additional nodes are car-
ried per element (although this can also be a modeling advantage). Low order elements allow for
reduced connectivity in the assembled structural stiffness matrix, which may have definite advan-
tages during solution of the structural system when the system becomes (very) large.

In addition, on the basis of number of elements in a given mesh, Q8 may of course be expected to
yield more accurate results than 5β. However, on the basis of number of degrees of freedom in a
given mesh, this is not necessarily true.

Low order elements seem very attractive in iterative procedures like optimal structural design. In
topology optimization for example, a cursory glance at the literature suffices to reveal that the use
of low order Q4 elements by far exceeds the use of higher order elements. This notwithstanding the
fact that the low order Q4 element is susceptible to the highly undesirable locking-like phenomena
known as ‘checkerboarding’, from which the Q8 element does not suffer mostly. The fact that
the Q4 element requires heuristics to overcome checkerboarding does not in the least reduce its
popularity in topology optimization.

Furthermore, the Q8 element is inherently quite stiff; reduced integration is normally used to allevi-
ate this. Reduced integration however results in the introduction of a spurious mode or mechanism
on the element level. While this mechanism is in general, and fortuitously, non-communicable
in any assembly of two or more elements, it is possible to demonstrate situations where the
mechanism does propagate [38]. Notorious examples include vibration analysis, even for over-
constrained structures.

Convergence rate considerations are probably also important when selecting elements. The con-
vergence rate of the quadratically interpolated Q8 element is of course superior to the convergence
rate of the assumed stress 5β element (being cubic versus quadratic). This seems an enticing ar-
gument indeed for using Q8 elements. However, in many practical analysis, singularities are an
inevitable part of the problem description. In the presence of singularities, the severity of the singu-
larities greatly influence the demonstrated overall convergence rate; largely, the convergence rates
of all elements are equal in the presence of singularities. Phenomena which induce singularities
into a model include mesh related discontinuities like sharp re-entrant corners, and discontinuities
in the description of boundaries and applied tractions.

However, notwithstanding the foregoing remarks, it will probably remain an open question whether
(relatively accurate) low order elements are preferable to higher order elements, and vice versa. In
part, selection of a given element by the analyst will depend on the capabilities and limitations of
in-house supportive software, e.g. mesh generators. One also has to acknowledge that element
selection often depends on the the personal preference of the analyst.

Hence, if there are any certainties regarding the relative virtues of different element formulations,
it is that the availability of a number of analysis options (elements) seems attractive indeed. It is
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for this very reason that we concern ourselves with the advanced low order element for geometric
nonlinear analysis presented in the following sections.

Many a low order geometric nonlinear element is intended for inclusion in explicit finite element
analysis codes. In these codes, explicit time integration steps are used. The single most important
aspect is computational efficiency, since very large finite element meshes are often required. A typ-
ical example being crash analysis. In explicit finite element codes, the emphasis on computational
efficiency makes reduced integration of simple, displacement based elements an attractive feature.
The resultant analysis can of course become unstable, often only controlled by highly skilled and
experienced developers and users of these codes. Sometimes, stabilization schemes are used, but
these do not guarantee unconditional stability. Nevertheless, reduced integration is a necessity in
explicit simulation codes.

In this work, we focus on rank sufficient geometric nonlinear formulations; the intended appli-
cation being implicit finite element analysis codes. Hence a mixed formulation is attractive, in
particular if low order elements are desirable, and if bending dominated problems are studied.

The element proposed herein is an extension of the popular linear elastostatic 5β formulation
proposed by Pian and Sumihara, since we opt for the same stress interpolation matrix. (Many other
possibilities exist.) The extended formulation provides for geometric nonlinearity; four numerical
example problems are presented. In the next chapter, the application of the element proposed
herein to very slender nonlinear electrostatic MEMS devices is demonstrated. In this application,
Q4 elements proved to be so stiff, that sufficient accuracy could not be attained with reasonable
meshes.

This chapter is constructed as follows: In Section 3.2, we recap the formulation of the linear elastic
assumed stress mixed formulation. However, rather than starting with the Hellinger-Reissner two
field principle, we choose to depart from equilibrium, merely because this simplifies the presen-
tation of the nonlinear formulation. In Section 3.3 we then present our geometrically nonlinear
assumed stress formulation. In both Section 3.2 and Section 3.3, we present applicable Tonti di-
agrams for illustrative purposes. Numerical results are presented in Section 3.4, and concluding
remarks are offered in Section 3.5. For the sake of completeness, intricate element operators are
presented in Appendix A, where their presentation does not distract from reading the Chapter.

3.2 Linear elastic assumed stress mixed formulation

We will now briefly review the formulation of the linear elastic assumed stress mixed element. Let
Ω̄ be the closed and bounded domain occupied by a solid body. The interior part of Ω̄ is denoted
Ω and it’s boundary ∂Ω = Γ, i.e. Ω̄ = Ω ∪ ∂Ω. The boundary consists of that part where
surface tractions t̄ are prescribed (Γt) and a part where displacements ū are prescribed (Γu), with
Γ = Γu ∪ Γt. In the domain Ω, the strong form of the linear elastic boundary value problem is
given by [39]

divσ + f = 0, (3.1)
σ = Cε, (3.2)

ε =
1

2
(∇u +∇uT), (3.3)
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and on the boundary Γ,

σn = t̄ on Γt, (3.4)
u = ū on Γu, (3.5)

where u is the displacement field, ε is the infinitesimal strain tensor, σ is the stress tensor, f is the
body force vector, C is the fourth order tensor that contains the elastic constants of the generalized
Hooke’s law, t̄ is the prescribed traction on the boundary Γt with outward unit normal n and ū is
the prescribed displacement on the boundary Γu.

In the assumed-stress mixed formulation, we solve for two independent fields, namely displace-
ment u and stress σ. The Tonti diagram [40] in Figure 3.1 depicts this formulation, where the filled
boxes are used to indicate the primary fields. Derived quantities (or slave fields) are indicated by
dashed boxes, and subscripts are used to indicate to which primary field the slave field is related,
e.g. εu is the strain field computed from the displacement, whereas εσ is the strain field computed
from the stress field. Strong enforcement of relationships is indicated by a double line, whereas
weak enforcement of relationships is indicated by a single line.

ūu

εu σ

t̄

εσ f

εu = 1
2
(∇u +∇uT)

εσ = C−1σ

u = ū on Γu

∫
Ω
(εu − εσ) ·wCEdΩ = 0

∫
Ω
(divσ + f) ·wBEdΩ = 0

∫
Γt

(σn− t̄) ·wFBCdΓt = 0

µ µ

Figure 3.1: Tonti-diagram of linear elastic assumed stress mixed formulation.

In the displacement based formulation, only the equilibrium equation (3.1) and the traction bound-
ary condition (3.4) are enforced in a weak sense. However, in the mixed formulation the stress
field is independently interpolated. This stress field is solved by equating the two strain fields εu

and εσ in a weak sense. Hence, the weak formulation of the linear elastic boundary value problem
is given by

∫

Ω

(divσ + f) ·wBEdΩ = 0, (3.6)
∫

Ω

(εu − εσ) ·wCEdΩ = 0, (3.7)

where wBE is an arbitrary weighting function on the balance (equilibrium) equation, with wBE = 0
on Γu, and wCE is an arbitrary weighting function on the compatibility equation. Applying the
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divergence theorem to (3.6), and enforcing the traction boundary condition in a weak sense, we
obtain ∫

Ω

(−σ · ∇wBE + f ·wBE)dΩ +

∫

Γ

t̄ ·wBEdΓ = 0. (3.8)

3.2.1 Finite element formulation

Henceforth, we will use square brackets [ ] to indicate matrices, and curly braces { } to indicate
vectors. The displacement field is interpolated as

u =
∑

e

ue =
∑

e

[N e]{U e}, (3.9)

where the matrix [N e] contains elemental nodal interpolation functions, and the vector {U e} con-
tains elemental nodal displacements. For the sake of notational brevity, elemental superscripts ‘e’
and summation over the elements are henceforth neglected, but are implied. Using this simplified
notation, (3.9) for example becomes

u = [N ]{U}. (3.10)

Now, following the usual Bubnov-Galerkin approach, the weighting function wBE is interpolated
using the same interpolation functions as those used for displacement, hence

wBE = [N ]{WBE}, (3.11)

with {WBE} a vector containing the nodal weighting values. The gradient of the weighting func-
tions follows as

∇wBE = [B]{WBE}, (3.12)

where the matrix [B] contains the spatial gradients of the interpolation functions [N ].

The element stress field σ is interpolated as

σ = [P ]{β}, (3.13)

with [P ] the stress interpolation matrix, in turn expressed in terms of the elemental stress parameter
vector {β}. This stress interpolation is continuous within an element, but inter-element disconti-
nuities are allowed.

Substituting (3.12) and (3.13) into (3.8), we obtain
∫

Ω

{WBE}T (−[B]T[P ]{β}+ [N ]T{f}) dΩ +

∫

Γ

{WBE}T[N ]T{t̄}dΓ = 0. (3.14)

Since the vector {WBE} contains nodal values, it is removed from the integrals. Furthermore, since
the nodal values in {WBE} are arbitrary, it follows that

∫

Ω

[B]T[P ]{β}dΩ =

∫

Ω

[N ]T{f}dΩ +

∫

Γ

[N ]T{t̄}dΓ. (3.15)
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The stress interpolation parameters in {β} are eventually obtained via (3.7). The strain derived
from the displacement field is given by

εu = [B]{U}, (3.16)

whereas the strain derived from the stress field is given by

εσ = [C]−1{σ} = [C]−1[P ]{β}. (3.17)

Selecting the Bubnov-Galerkin method again prescribes that the weighting functions wCE are in-
terpolated using the same interpolation matrix [P ] as used for stresses, hence

wCE = [P ]{WCE}. (3.18)

Substituting (3.16) through (3.18) into (3.7), we obtain
∫

Ω

{WCE}T[P ]T
(
[B]{U} − [C]−1[P ]{β}) dΩ = 0. (3.19)

Again, since {WCE} contains arbitrary nodal quantities it can be removed from the integral, and we
obtain (∫

Ω

[P ]T[B]dΩ

)
{U} =

(∫

Ω

[P ]T[C]−1[P ]dΩ

)
{β}. (3.20)

The stress interpolation parameters in {β} are solved from (3.20):

{β} =

(∫

Ω

[P ]T[C]−1[P ]dΩ

)−1 (∫

Ω

[P ]T[B]dΩ

)
{U}. (3.21)

The formulation is completed by substituting (3.21) into (3.15) to obtain the linear system of
equations

[K]{U} = {F}. (3.22)

The global stiffness matrix [K] and global load vector {F} are computed from

[K] =
∑

e

(∫

Ω

[B]T[P ]dΩe

)(∫

Ω

[P ]T[C]−1[P ]dΩe

)−1 (∫

Ω

[P ]T[B]dΩe

)
, (3.23)

and

{F} =
∑

e

(∫

Ω

[N ]T{f}dΩe +

∫

Γ

[N ]T{t̄}dΓe

)
, (3.24)

where we now explicitly indicate summation over elements e. It follows from (3.23) that the
stiffness matrix is symmetric.
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3.3 Geometrically nonlinear assumed stress mixed formulation

Let us now review the geometrically nonlinear formulation of the solid mechanics boundary value
problem. Consider the deformable body depicted in Figure 3.2. Due to the possible presence or
large displacements and/or rotations, it now becomes necessary to distinguish between the unde-
formed and deformed bodies. The undeformed body is denoted by Bo, whereas the deformed body
is denoted by B. Again, let Ω̄ be the closed and bounded domain occupied by the deformed solid
body B. The interior part of Ω̄ is denoted Ω and it’s boundary Γ, i.e. Ω̄ = Ω ∪ Γ. The boundary
consists of that part where surface tractions t̄ are prescribed (Γt) and a part where displacements
ū are prescribed (Γu), with Γ = Γu ∪ Γt.

P

P
u

Bo

X

x

B

Figure 3.2: Undeformed and deformed configurations.

The coordinates of any point P within the body are given by x(P ) in the deformed configuration
and by X(P ) in the undeformed configuration. The displacement of this point is denoted by u(P ).
It follows from Figure 3.2 that

x = X + u. (3.25)

The deformation gradient F is given by

F =
dx

dX
= I +

du

dX
. (3.26)

The Green-Lagrange strain tensor E is defined as

E =
1

2
(F TF − I) . (3.27)

We assume that the body is hyperelastic[39], from which it follows that the Cauchy stress tensor
T is given by

T =
1

det(F )
F

De

DE
F T. (3.28)

where e is the strain energy function per unit volume in the initial configuration. De
DE

is denoted
the second Piola-Kirchoff stress tensor S; it is symmetric.
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Since the focus of this Chapter is to develop a geometrically nonlinear formulation, we only con-
sider material models in which the second Piola Kirchoff stress is a linear function of the Green-
Lagrange strain. In particular, we use a St-Venant-Kirchoff material, for which

e(E) =
λ

2
(tr(E))2 + µtr(E2). (3.29)

Here λ > 0 and µ > 0 are the Lame constants. For this material S = De
DE

= CE, where C contains
the same constants that appear in the linear generalized Hooke’s law, (3.2).

To summarize: In the domain Ω, the strong form of the geometrically nonlinear boundary value
problem is given by:

divT + f = 0, (3.30)
F = I +∇Xu, (3.31)

E =
1

2
(F TF − I), (3.32)

T =
1

det(F )
FCEF T, (3.33)

and on the boundary Γ,

T · n = t̄ on Γt, (3.34)
u = ū on Γu, (3.35)

where ∇X indicates spatial gradients w.r.t. the undeformed geometry and all other symbols have
the same meaning as before.

The Tonti diagram in Figure 3.3 depicts the assumed stress mixed formulation of the geometrically
nonlinear boundary value problem. The two primary fields, displayed in the filled boxes, are the
displacement u and the second Piola-Kirchoff stress S. The derived fields (or slave fields) that
depend on the displacement field are F u and Eu. The field Es is derived from the Piola-Kirchoff
stress field. The Cauchy stress T depends on both the displacement field u (due to it’s dependency
on F u) and the Piola-Kirchoff stress S, hence it is denoted T u,s.

Following a similar procedure as with the linear elastic assumed stress mixed formulation, the
weak form of the geometrically nonlinear boundary value problem is stated as

∫

Ω

(divT + f) ·wBEdΩ = 0, (3.36)
∫

Ωo

(Eu −Es) ·wCEdΩo = 0, (3.37)

where wBE and wCE have the same meaning as before. (3.36), the equilibrium condition, is en-
forced in the deformed (current) configuration, indicated by integration over the current domain
Ω. The strain compatibility condition, (3.37), is enforced in the undeformed (original or refer-
ence) configuration, denoted by integration over the reference domain Ωo. This follows since the
Green-Lagrange strain is a strain measure defined in the undeformed (or reference) configuration.
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ūu

F u

Eu Es S

T u,s

t̄

f

F u = I +∇Xu

Eu = 1
2
(F T

uF u − I)

Es = C−1S

u = ū on Γu

∫
Ωo

(Eu −Es) ·wCEdΩo = 0

T u,s = 1
det(F u)

F T
uSF u ∫

Ω
(divT u,s + f) ·wBEdΩ = 0

∫
Γt

(T u,sn− t̄) ·wFBCdΓt = 0

µ

µ

Figure 3.3: Tonti-diagram of geometrically nonlinear assumed stress mixed formulation.

Applying the divergence theorem to (3.36), and enforcing the traction boundary condition in a
weak sense, we obtain

∫

Ω

(−T · ∇xwBE + f ·wBE)dΩ +

∫

Γ

t̄ ·wBEdΓ = 0, (3.38)

where ∇x indicates spatial gradients w.r.t. the deformed (current) configuration.

3.3.1 Finite element formulation

The displacement field u and weighting function wBE are interpolated as

u = [N ]{U} and wBE = [N ]{WBE}. (3.39)

The gradient of the weighting functions follows as

∇xwBE = [Bx]{WBE}, (3.40)

where the matrix [Bx] contains the spatial gradients of the interpolation functions [N ] w.r.t. the
deformed coordinates x.

The Piola-Kirchoff stress vector {S} is interpolated as

{S} = [P ]{β}. (3.41)
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Note that since the Piola-Kirchoff stress field is defined in the reference configuration, the [P ]
matrix only depends on the reference coordinates X .

The Cauchy stress is computed from the second Piola-Kirchoff stress using (3.33). For convenient
computer implementation in 2D plane problems, the Cauchy stress vector {T} is computed as

{T} =
1

det(F )
[Υ]{S} =

1

det(F )
[Υ][P ]{β}, (3.42)

where

{T} =





T11

T22

T12



 , {S} =





S11

S22

S12



 and [Υ] =




F 2
11 F 2

12 2F11F12

F 2
21 F 2

22 2F21F22

F11F21 F12F22 F11F22 + F12F21


 . (3.43)

The vector form of the deformation gradient F is computed from

{F} =





F11

F22

F12

F21





= [BX ]{U}+





1
1
0
0





, (3.44)

where [BX ] contains the spatial gradients of the interpolation functions [N ] w.r.t. the reference
coordinates X .

Substituting (3.40) and (3.42) into (3.38), we obtain
∫

Ω

{WBE}T

(
−[Bx]

T 1

det(F )
[Υ][P ]{β}+ [N ]T{f}

)
dΩ +

∫

Γ

{WBE}T[N ]T{t̄}dΓ = 0. (3.45)

Again, since {WBE} contains arbitrary nodal values, we obtain
∫

Ω

[Bx]
T 1

det(F )
[Υ][P ]{β}dΩ =

∫

Ω

[N ]T{f}dΩ +

∫

Γ

[N ]T{t̄}dΓ. (3.46)

For notational convenience, the right-hand side of (3.46) is henceforth denoted {F}.

The stress interpolation parameters in {β} are obtained via (3.37). The vector form of the Green-
Lagrange strain {Eu} is computed from

{Eu} =





E11

E22

2E12



 =

1

2





F 2
11 + F 2

12 − 1
F 2

21 + F 2
22 − 1

2(F11F21 + F12F22)



 . (3.47)

The Green-Lagrange strain vector {Es} is derived from the stress field, i.e.

{Es} = [C]−1{S} = [C]−1[P ]{β}. (3.48)

Again, the weighting functions wCE are interpolated using the interpolation matrix [P ], hence

wCE = [P ]{WCE}. (3.49)
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Substituting (3.47) through (3.49) into (3.37), we obtain
∫

Ωo

{WCE}T[P ]T
({Eu} − [C]−1[P ]{β}) dΩo = 0. (3.50)

Once again, since {WCE} contains arbitrary nodal quantities, we have
∫

Ωo

[P ]T{Eu}dΩo =

(∫

Ωo

[P ]T[C]−1[P ]dΩo

)
{β}. (3.51)

The stress interpolation parameters in {β} are solved from (3.51):

{β} =

(∫

Ωo

[P ]T[C]−1[P ]dΩo

)−1 ∫

Ωo

[P ]T{Eu}dΩo. (3.52)

The formulation is completed by substituting (3.52) into (3.46) to obtain

∫

Ω

[Bx]
T 1

det(F )
[Υ][P ]dΩ

(∫

Ωo

[P ]T[C]−1[P ]dΩo

)−1 ∫

Ωo

[P ]T{Eu}dΩo = {F}. (3.53)

(3.53), which is a nonlinear equation in nodal displacements {U}, is now expressed as the residual
equation

{R} =

∫

Ω

[Bx]
T 1

det(F )
[Υ][P ]dΩ

(∫

Ωo

[P ]T[C]−1[P ]dΩo

)−1 ∫

Ωo

[P ]T{Eu}dΩo − {F} = {0}.
(3.54)

We choose to solve (3.54) using the Newton-Raphson algorithm. If a trial solution {U}i is available
at iteration i, the updated solution {U}i+1 is solved from

{U}i+1 = {U}i + {∆U}i+1, (3.55)

where the update {∆U}i+1 is solved from the linear system of equations

d{R}i

d{U}i

{∆U}i+1 = −{R}i. (3.56)

Should we attempt to solve (3.54) in the presented form, the computation of the consistent tangent
d{R}i

d{U}i
is more difficult than necessary, because the integration of the first term occurs over the de-

formed configuration, which is a function of the unknown displacements. A simple transformation
to the reference configuration is possible, using the relation

dΩ = det(F )dΩo. (3.57)

Substituting (3.57) into (3.54) produces the final form of the residual equation:

{R} =
∑

e

{Re} =

∫

Ωo

[Bx]
T[Υ][P ]dΩo

(∫

Ωo

[P ]T[C]−1[P ]dΩo

)−1 ∫

Ωo

[P ]T{Eu}dΩo − {Fe},
(3.58)
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where we have now explicitly indicated that the global residual {R} is a summation over all the
element residuals {Re}.

If we consider the 2D plane problem, with n nodes per element, and p β parameters per element,
we can conveniently express an element residual as

{Re}2n×1 = [G]2n×p[H]−1
p×p{M}p×1 − {Fe}2n×1, (3.59)

where the subscripts now indicate matrix and vector dimensions. The element matrices [G] and
[H] and the element vector {M} are respectively given by

[G]2n×p =
∑
NGi

∑
NGj

[Bx]
T[Υ][P ] det(J)wiwj, (3.60)

[H]p×p =
∑
NGi

∑
NGj

[P ]T[C]−1[P ] det(J)wiwj, (3.61)

{M}p×1 =
∑
NGi

∑
NGj

[P ]T{Eu} det(J)wiwj. (3.62)

Note that we now explicitly indicate that the element matrices and vector are integrated numerically
using Gauss quadrature, where NGi and NGj indicate the number of Gauss points, wi and wj are
the Gauss point weights and J is the elemental Jacobian in the original configuration (hence not a
function of the nodal displacements).

We compute the consistent tangent analytically, by assembly of the consistent tangents of each
element. The consistent tangent of an element is computed by differentiating (3.59) w.r.t. the
element nodal displacements {Ue}. The terms in (3.59) that depend on {Ue} are [G], {M} and
{Fe} (the last only if follower loads are present).

The element consistent tangent is computed as

d{Re}
d{Ue} =

d[G]

d{Ue} [H]−1{M}+ [G][H]−1d{M}
d{Ue} −

d{Fe}
d{Ue} , (3.63)

where

d[G]

d{Ue} =
∑
NGi

∑
NGj

(
d[Bx]

T

d{Ue} [Υ] + [Bx]
T d[Υ]

d{Ue}
)

[P ] det(J)wiwj, (3.64)

d{M}
d{Ue} =

∑
NGi

∑
NGj

[P ]T d{Eu}
d{Ue} det(J)wiwj. (3.65)

The term d[Υ]
d{Ue} is constructed by differentiating (3.43) w.r.t. each component Ui of the nodal dis-

placement vector {Ue},

d[Υ]

dUi

=




2F11
dF11

dUi
2F12

dF12

dUi
2 dF11

dUi
F12 + 2 dF12

dUi
F11

2F21
dF21

dUi
2F22

dF22

dUi
2dF21

dUi
F22 + dF22

dUi
F21

dF11

dUi
F21 + dF21

dUi
F11

dF12

dUi
F22 + dF22

dUi
F12

dF11

dUi
F22 + dF22

dUi
F11 + dF12

dUi
F21 + dF21

dUi
F12


 .

(3.66)
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The derivative d{F}
d{Ue} is simply [BX ], which follows directly from (3.44).

The derivative of the Green-Lagrange strain vector {Eu}w.r.t. the nodal displacements is computed
by differentiating (3.47):

d{Eu}
d{Ue} =





F11
dF11

d{Ue} + F12
dF12

d{Ue}
F21

dF21

d{Ue} + F22
dF22

d{Ue}
dF11

d{Ue}F21 + F11
dF21

d{Ue} + dF12

d{Ue}F22 + F12
dF22

d{Ue}





. (3.67)

The detailed computation of the matrices [BX ], [Bx] and the derivative d[Bx]
d{Ue} are presented in the

Appendix.

In the absence of follower loads, the consistent tangent is symmetric. In this case, the linear
system in (3.56) is solved in the usual way by first factoring the consistent tangent using Cholesky
decomposition, and then performing two backsubstitutions.

In linear elastic analysis, one criticism of mixed formulations is the computational cost of the
matrix inversions required for the computation of every element stiffness matrix. For the nonlinear
5β element, the 5× 5 matrix [H] of course also requires inversion. Note however that this matrix
is not a function of displacements, hence it remains constant during a geometrically nonlinear
analysis. It is therefore possible to construct and invert the [H] matrices for all the elements during
the first iteration of nonlinear analysis, and then store them for all subsequent iterations. The total
required storage space for all the [H] matrices is approximately 40% of the storage requirement
for the global consistent tangent, if the global consistent tangent is saved in sparse form.

3.3.2 Choice of interpolation matrix [P ]

We use the same interpolation matrix [P ] as in the popular 5β linear elastic assumed stress mixed
element [32] proposed by Pian and Sumihara. In this case, the matrix [P ] is given by

[P ] =




1 0 0 a2
1η a2

3ξ
0 1 0 b2

1η b2
3ξ

0 0 1 a1b1η a3b3ξ


 , (3.68)

where ξ and η are the natural coordinates of the element. The parameters ai and bi are defined by




a1 b1

a2 b2

a3 b3


 =

1

4



−1 1 1 −1

1 −1 1 −1
−1 −1 1 1







X1 Y1
...

...
X4 Y4


 , (3.69)

where Xi and Yi are the reference coordinates of node i.

The parameters ai and bi constrain the stress interpolation matrix; a number of alternative con-
straints to those proposed by Pian and Sumihara are possible. A selection was proposed by Di and
Ramm [41]. However, our experience with linear elements suggests that the difference in accu-
racy due to alternative constraint formulations is not expected to be dramatic. Therefore we only
consider [P ] as in (3.68) and (3.69).
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3.4 Numerical results

3.4.1 Patch tests

As expected, the element passes the uniaxial and simple shear patch tests. The undeformed and
deformed patch of elements for the prescribed displacement simple shear test are depicted in Fig-
ure 3.4 (a) and (b) respectively. This specific example is a plane stress analysis with E = 1.0,
ν = 0.3 and unit thickness. The norm of the residual vector {R}i and the norm of the displace-
ment increment {∆U}i are listed in Table 3.1 versus iterations number i. Since all stress and
strain components are non-zero for this problem, the observed quadratic convergence rate per iter-
ation (not to be confused with quadratic convergence rate with mesh refinement) verifies that the
consistent tangent is computed correctly.
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0.6
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0 0.5 1 1.5

0

0.2
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(b)

Figure 3.4: (a) Undeformed and (b) deformed simple shear patch.

Iteration # ‖{R}i‖ ‖{∆U}i‖
1 5.946419 3.916557× 10−1

2 1.736318 1.891666× 10−1

3 4.459804× 10−1 1.189603× 10−1

4 9.868668× 10−2 3.721763× 10−2

5 1.113266× 10−2 5.123944× 10−3

6 1.916301× 10−4 8.48968e× 10−5

7 5.557537× 10−8 2.42351e× 10−8

8 4.565369× 10−15 1.987818× 10−15

Table 3.1: Convergence history for simple shear patch test depicted in Figure 3.4.

3.4.2 Pure flexure of a beam

In order to assess the performance of the mixed element in bending dominated problems, we
analyze a beam of length 10 and depth 1, that is bent into a complete circle. The problem is
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analyzed with E = 1.0 and ν = 0. As the solution to this problem contains no singularities,
this example will be used to numerically compute the convergence rate of our proposed nonlinear
element, as the mesh is refined. We expect a convergence rate of 2, similar to the linear elastic
version of our element.

In the finite element simulation, the beam is only constrained at the left and right edges, which are
forced to coincide. The initial guess of the deformed shape is given by

x = (R− Y ) sin(X/R), (3.70)
y = R− (R− Y ) cos(X/R), (3.71)

where X and Y are the undeformed coordinates, x and y are the deformed coordinates and
R = L/2π is the radius of the neutral axis. The moment required to deform the beam into the
circle is computed from the nodal reactions after the analysis converges. A finite-difference based
numerical solution to this problem [42], using 10000 point through the thickness of the beam,
predicts that a moment of 0.0432523 will bend the beam into a complete circle.

The computed moments are listed in Table 3.2 for a number of meshes, where they are also com-
pared to the linear 4 node element (Q4) and the quadratic 8 node element using both full integration
(Q8FI) and reduced integration (Q8RI). These results are also depicted graphically in Figure 3.5,
which illustrates that the convergence rate of the proposed mixed element is indeed 2. Note that
the convergence rate of the Q8 elements is 4, higher that the expected rate of 3. An example of a
deformed mesh is given in Figure 3.6, which depicts the 40× 4 mesh.
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Figure 3.5: Convergence of the required moment to bend the beam into a complete circle.

3.4.3 Cook’s membrane

Consider the tapered panel depicted in Figure 3.7, which is clamped at the left edge and subjected
to a shear load on the right edge. This problem is known as ‘Cook’s membrane problem’ in the
linear elastic case [38]. The plane stress simulation is performed with E = 1.0, ν = 0.3 and unit
thickness. The nodal loads are computed for a uniform transverse load distribution in the reference
configuration, and does not change with displacement.
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Figure 3.6: Deformed shape of a deep beam subject to a pure bending moment.

Mesh size Tip moment
mixed Q4 Q8FI Q8RI

10× 1 0.0458336 0.0661433 0.0443912 0.0432741
20× 2 0.0443630 0.0494159 0.0433339 0.0432498
40× 4 0.0435642 0.0448334 0.0432574 0.0432519
80× 8 0.0433323 0.0436502 0.0432526 0.0432522

160× 16 0.0432724 0.0433544 0.0432523 0.0432523

Table 3.2: Tip moments required to bend a deep beam into a complete circle.

In the linear elastic case this problem is usually solved for a total transverse load magnitude of 1.0
upwards. However, in the geometrically nonlinear version of this problem, this load magnitude
is excessive in the limit of mesh refinement, as the top left element inverts. Hence, we perform
a mesh refinement study with the unit load applied downwards, which does not lead to element
inversion anywhere in the mesh.

Note that this problem contains a singularity in the strain and stress fields at the left top corner,
point A in Figure 3.7. Therefore, the theoretical convergence rate of elements no longer applies,
and the strength of the singularity generally dictates the convergence rate [38]. Since many practi-
cal problems contain singularities, this example is used to demonstrate the accuracy of the proposed
element in such a case.

# elements Nonlinear Nonlinear Nonlinear
in mesh Q4 Q8RI mixed
2× 2 -12.9801 -27.4169 -24.9396
4× 4 -21.5895 -28.2439 -27.7063
8× 8 -26.3671 -28.3897 -28.2568

16× 16 -27.8926 -28.4387 -28.3993
32× 32 -28.3095 -28.4580 -28.4437
64× 64 -28.4233 -28.4653 -28.4598

128× 128 -28.4557 -28.4681 -28.4659

Table 3.3: Vertical displacement at the center of the right edge for Cook’s membrane problem as a
function of the number of elements in the mesh.

The downwards vertical displacement at the center of the right edge, point C in Figure 3.7, is
tabulated in Table 3.3 as a function of the number of elements per mesh. An example of the
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Figure 3.7: Undeformed and deformed Cook’s membrane problem for the 16× 16 mesh.

deformed shape is presented in Figure 3.7, which depicts the 16 × 16 mesh. The accuracy of
the mixed element is compared to the geometrically nonlinear displacement-based elements Q4
and Q8RI in Table 3.3. The displacement results are also presented graphically in Figure 3.8
as a function of the total number of degrees of freedom. This illustrates that for problems with
singularities, our 4 node mixed formulation demonstrates similar accuracy as the Q8RI element,
when expressed as a function of the total number of structural degrees of freedom.

The analysis was repeated for the 32×32 mesh for a tip load varying between -1 and 1. The vertical
displacement of point C as a function of the total load magnitude is summarized in Table 3.4. The
resulting load-displacement graph is depicted in Figure 3.9. Note the hardening behavior for a
positive force (the moment arm decreases as the beam deflects upwards) and the softening behavior
for a negative force (the moment arm increases as the beam deflects downwards).

Load Displacement Load Displacement
1.0 15.3352 -1.0 -28.4437
0.8 13.2546 -0.8 -23.0137
0.6 10.8323 -0.6 -17.1295
0.4 7.9203 -0.4 -11.0468
0.2 4.3592 -0.2 -5.1987
0.1 2.2861 -0.1 -2.4998

0.01 0.23832 -0.01 -0.24047
0.001 0.023929 -0.001 -0.023951

Table 3.4: Cook’s membrane: Tip midpoint deflection vs. total transverse load.
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Figure 3.8: Cook’s membrane problem: Convergence of the vertical tip displacement.

3.4.4 Beam under tip load

In this example [37], a cantilever beam of unit height and length L = 20, subjected to a transverse
load P , is studied. The problem is analyzed using our mixed formulation, as well as the displace-
ment based Q4 and Q8RI elements, for E = 4.8 × 108 and ν = 0 (in which case plane stress and
plane strain are identical).

The beam theory analytical solution, which does not take through thickness effects into account, is
available from [43]. Results are presented in terms of the normalized force PL2

EI
and the normalized

vertical tip deflection W
L

, where W is the vertical tip deflection and I is the second moment of area
of the beam cross section.

Figure 3.10 compares the accuracy of the mixed element to the analytical solution, as well as the Q4
and Q8RI elements. Note that the mixed element solution using a 10 × 1 mesh compares almost
exactly to the analytical solution. Although not shown here, the agreement deteriorates slightly
with mesh refinement, as through thickness effects start playing a role (not accounted for in the
analytical solution). The Q8RI result also demonstrates this effect, with predicted tip displacement
slightly greater than the analytical value. Examples of deformed states are depicted in Figure 3.11,
for various values of the normalized force PN .

3.5 Conclusions

In this Chapter, a geometrically nonlinear version of the popular 5β assumed stress element pre-
viously proposed by Pian and Sumihara for linear elasticity was developed. The resultant element
is rank sufficient and passes the patch test. In the presence of singularities, the accuracy of the
element is comparable to that of the well known displacement based Q8 element with a quadratic
interpolation field and reduced integration.
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Figure 3.9: Load-displacement graph for Cook’s membrane problem, which illustrates softening
and hardening response.
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Figure 3.10: Force-displacement comparison for transverse loading of a cantilever beam.

Like the element for linear elasticity, the element requires inversions of the partition matrix [H]
on the element level. However, since this matrix is not a function of elemental displacements,
it remains constant during a geometrically nonlinear analysis. This fact may be exploited in an
efficient computer implementation, if so desired.

Numerical results confirm the accuracy of the element. The element is an attractive alternative
to the displacement based Q4 element in implicit finite element codes; in particular in (slender)
bending dominated applications.
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Figure 3.11: Deformation of cantilever beam with increasing transverse tip load, obtained using a
20× 2 mesh and the mixed element.
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Chapter 4

FE modeling of MEMS, using analytical
gradients

In this chapter, an efficient algorithm for self-consistent analysis of electromechanical coupled
systems in MEMS is described. The algorithm employs a Newton method to solve the coupled
electromechanical equations using analytical gradients. This approach is shown to converge very
rapidly and is much faster than the simpler relaxation algorithm for tightly coupled cases. While
this chapter focuses on coupled electromechanical analysis, the proposed algorithm can be ex-
tended to include several coupled domains typically encountered in MEMS.

4.1 Introduction

The progress of MEMS is growing rapidly in recent years and the potential of MEMS is widely
recognized. MEMS devices are increasingly used in various fields such as the aerospace and
automotive industries. MEMS mechanisms typically exploit the interaction of multiple physical
fields, and modeling and simulation of the coupled fields plays a very important role in the design
phase in predicting device characteristics. In traditional deterministic MEMS design, this coupling
is often roughly approximated, leading to performance and reliability problems [44]. In recent
years, finite-element (FE) based simulation tools are frequently used in designing MEMS devices.

Although there are many MEMS designs that use piezoelectric, thermal, pneumatic, and magnetic
actuation, a very popular approach in present day microsensor and microactuator designs is to use
electrostatic forces to move micromachined parts [45]. Electrostatic MEMS is a special branch
under micromechanics with a wide range of applications such as switches, micro-mirrors and
micro-resonators [46]. Analysis of such microelectromechanical systems involves two coupled
fields: electrostatics and elastomechanics.

The elastomechanics can sometimes be geometrically nonlinear due to either large deflection or
nonlinear stiffening. For the geometrically linear case, the structure is analyzed in the undeformed
(original) configuration; while for the geometrically nonlinear case, the structural stiffness is no
longer constant, hence the structure is solved in the deformed (current) shape. If a case is analyzed
where large deflections occur, such as a slender beam subjected to a large electrostatic force, un-

29
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structured remeshing may be required to generate the electrical mesh, in order to avoid element
inversions. In cases where the geometric nonlinearity does not coincide with large deflections,
such as stress-stiffening in clamped membranes, a simpler structured remeshing algorithm can be
used to generate the electrical mesh.

Newton’s method is an attractive option to solve the coupled non-linear system. But the gradients
required in the Newton method are normally approximated using finite-differences. When the
systems become complex, many degrees of freedom are required to model it accurately, therefore
the cost of evaluation of the gradients using finite-differences could be enormous.

MEMS are often designed on scales at which electrostatic forces are capable of moving or de-
forming the parts of the system. In this regime accurate prediction of device behavior may require
3-D coupled simulations between the electrostatic and mechanical domains [5]. However, in many
cases a 2-D model can be very accurate. In fact, as shown in Reference [47], a 2-D model for a
electrostatic-mechanical coupled cantilever beam gives an error of less than 1%.

In this chapter, FEM is used to model 2-D coupled fields and the gradients for the 2-D model used
during a Newton iteration are expressed analytically without using finite-differences. The analytic
gradients provide the accuracy and efficiency required for the analysis. With examples, it will be
shown that Newton’s method can solve the coupled field system very efficiently using analytical
gradients, even when the unstable pull-in stage is approached. A few other common methods are
also studied for comparison.

The chapter is concluded by analyzing two problems in which geometric nonlinearities occur. The
first problem concerns the large deflection of a slender cantilever beam subjected to a electrostatic
force. The maximum deflection of the beam tip is limited by inversion of electrical elements, due
to the use of a structured remeshing algorithm. The second problem analyses the effect of stress-
stiffening in a clamped membrane. In this case, the structured remeshing of the electrical mesh
performs well.

4.2 Electrostatics and elastomechanics systems

Microelectromechanical systems involve a mechanical structure which deforms when subjected to
electrostatic actuation, as shown in Figure 4.1. Typically, the deformation will cause a change in
the charge distribution, and ‘reorganization’ of the structure (and the electrical field around it), as
illustrated in Figure 4.1. An equilibrium state is reached when the mechanical force due to the
deformation of the structure and the electrostatic force due to the electrical charges balance each
other. The final deformation and charge distribution can be obtained by solving the non-linear
coupled system iteratively.

In linear structural analysis the assumption is made that the displacement gradients are very small,
hence the structural stiffness remains constant throughout the analysis. In a FEM analysis this
means that geometry of the elements remains basically unchanged in the loading process and that
strains can be approximated by the first-order, infinitesimal linear form [48]. These assumption are
no longer valid in many problems involving microsensors and particularly microactuators, in which
large displacement gradients may occur [49]. Geometrical non-linearities must be introduced,
besides the non-linearities due to the electromechanical coupling.
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Figure 4.1: A schematic figure showing the reorganization of charge (and thus forces) accompa-
nying the deformation in an electro-mechanical device.

4.2.1 Structural modeling

In this chapter, we consider geometrically nonlinear structural analysis. The possible simplifica-
tions in the case of linear structural analysis will be noted. Mathematically, the discretized residual
equation of the elastostatic field is represented as

Rs(u, V ) = f int(u)− f ext(u, V ) (4.1)

where f int and f ext are the internal and external nodal loads respectively. In the case of a linear
elastic structural analysis, f int = Ksu, where Ks is the stiffness matrix of the structure and u
is the nodal displacements. In this chapter, we only consider electrostatic forces. Therefore, the
external nodal load f ext depend on the voltage field V of the electrostatic field. However, due to
the choice of a structured remeshing strategy to generate the electrical mesh, the nodal coordinates
of all the electrical elements depend on the structural displacements u. The external nodal force
vector f ext therefore depends on both the voltage V and the displacement u.

4.2.2 Electrostatic modeling

The electrostatic field can also be discretized and the residual equation for the electrostatic field is
written as

Re(u, V ) = Ke(u)V − q (4.2)

where Ke represents the permittivity matrix of the electrostatic field and q is the nodal charge
density of the electrostatic field. Note that in the discretized governing equation, the nodal voltage
V is a vector.
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4.2.3 Remeshing

For a computed structural displacement u, there are two mesh generation options for the electro-
static mesh. Firstly, an adaptive scheme can be used in conjunction with a structured electrostatic
mesh; secondly, given a structural displacement u, a completely new electrostatic mesh can be gen-
erated at every iteration. In this chapter, the first mentioned structured remeshing strategy is used.
In order to do so, a third field is introduced to describe the motion of the structured electrostatic
mesh. The deformation of the electrostatic domain is modeled by a finite element formulation of a
fictitious elastic structure.

The purpose of introducing these fake structural elements is to limit elemental distortions and
adjust node locations within the electrostatic domain. The structural displacements are imposed
on the electrostatic mesh along the common interface.

In the work by Allen et. al. [44], such a three-field formulation is used to allow for relatively
large deformations of the electrostatic domain due to elastic displacements of the structure and
structural shape changes in an optimization process. In our case, we opt for the same three-field
formulation in order to generate analytical gradients, in particular the gradients of the electrical
mesh coordinates w.r.t. the structural displacement u.

The deformed electrostatic mesh is generated by solving the following fictitious mechanical resid-
ual equation

Rf (u) = Kfw(u)− g (4.3)

where Kf is the fictitious stiffness matrix of the electrostatic mesh, w is the electrostatic mesh
displacement and g is the fictitious nodal loads.

4.2.4 Newton-Raphson method

Note that since (4.3) is a simple linear equation, the electrostatic mesh displacement w is treated
as a dependent variable i.e. w = w(u). Therefore, there are only two residuals (Rs and Re) in the
coupled system, which depend on the two independent variables u and V .

We therefore solve the nonlinear system
{

Rs(u, V )
Re(u, V )

}
=

{
f int(u)− f ext(u, V )

Ke(u)V − q

}
=

{
0
0

}
(4.4)

iteratively for u and V from the Newton-Raphson method, i.e.
[

∂Rs

∂u
∂Rs

∂V
∂Re

∂u
∂Re

∂V

]i {
∆u
∆V

}i

= −
{

Rs

Re

}i

(4.5)

where ∆ui and ∆V i is the solution update at iteration i. The updated values for u and V is then
computed from {

u
V

}i+1

=

{
u
V

}i

+

{
∆u
∆V

}i

. (4.6)

(4.5) and (4.6) are solved repeatedly until the norm of both residuals are sufficiently close to zero,
and/or the solution converges. Note that the above expressions already presume that the prescribed
displacements and voltages have been applied, and that the reduced system is being solved.
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4.3 The residuals and analytical gradients

In this section, the residuals (Rs and Re) and analytical gradients in (4.5) are derived for a 2-D
analysis. (The 3-D analytical gradients can of course be obtained in a similar manner.)

4.3.1 The structural residual

The structural residual Rs is computed from (4.1). The computation of the internal nodal load f int,
using a nonlinear mixed formulation, is detailed in Chapter 3. For example, f int is the first term
in (3.59). To complete the computation of the structural residual, we require the external nodal
load vector f ext, due to the electrostatic field.

Electrostatic load

The electrostatic pressure is given by Maxwell’s electrostatic stress tensor evaluated along the
structural interface Ωe/s in the electrostatic mesh [50]. Assuming the structure to be a perfect
conductor, the electrostatic stress tensor is

T e = ε0e⊗ e− 1

2
ε0‖e‖2I (4.7)

where e = ∇V = [ex, ey]
T is the electrostatic field, ε0 is the permittivity of the free space, I is the

second order identity tensor and ⊗ is the dyadic product. Using the usual finite element notation,
the electrostatic field is written as

e = ∇V =

{
ex

ey

}
= [Bx]{V } (4.8)

where [Bx] contains the spatial gradients of the voltage interpolation functions. Note that these gra-
dients are taken w.r.t. the current coordinates of the electrical mesh (which depend on the structural
displacement).

The matrix form of the electrostatic stress tensor for two dimensions is written as

[Te] = ε0

[
e2

x − 1
2
‖e‖2 exey

exey e2
y − 1

2
‖e‖2

]
. (4.9)

The electrostatic pressure is given as
P = Ten (4.10)

where n is the normal on Ωe/s, pointing from the structural mesh into the electrical mesh. The
electrostatic force, here acting as an external force on the structure, is computed as

f ext =

∫

Ωe/s

P dΩe/s. (4.11)

As (4.10) shows, the electrostatic force is computed along the structural-electrostatic interface; it
is clear that the electrostatic force depends on the coordinates of the nodes in both the structural

 
 
 



www.manaraa.com

CHAPTER 4. FE MODELING OF MEMS, USING ANALYTICAL GRADIENTS 34

and electrostatic meshes. Figure 4.2 illustrates this point: the coordinates of nodes 1 and 4 depend
on the electrostatic mesh; while the coordinates of nodes 2 and 3 depend on the structural mesh.
In this case, the electrical nodal pressure for edge 2-3 contains four components

{Pn} =
[

P2x P2y P3x P3y

]T
. (4.12)

4

An electrostatic element that has a
common edge with the structure

Deformed structure

1

2 3

Figure 4.2: The interface electrostatic element.

Once the electrical pressure at the two nodes are known, it is then interpolated along the inter-
face Ωe/s

P = [N ]{Pn} (4.13)

where [N ] is the interpolation matrix. The electrical nodal force then becomes

f ext =

∫

Ωe/s

[N ]dΩe/s{Pn} (4.14)

The integration result [M ] of a linear interpolation matrix can be found in Appendix B. The elec-
trical nodal force is therefore

{fext} = [M ]{Pn} =
[

f2x f2y f3x f3y

]T
. (4.15)

As shown in Figure 4.3, the electrostatic nodal pressure {Pn} is interpolated and then integrated to
obtain the electrostatic nodal loads {fext}.

The computation of the structural residual is now complete, and the gradient computation now
follows.

4.3.2 Gradients of the structural residual

Gradient of the structural residual with respect to displacement

Direct differentiation of (4.1) w.r.t. displacement gives

∂Rs

∂u
=

∂f int

∂u
− ∂f ext

∂u
. (4.16)
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P2

n

P3

f2x

f3x

f3y

f2y

Figure 4.3: Interpolation of the electrical pressure.

The derivative of the external load vector w.r.t. displacement, for the case of a geometrically non-
linear mixed formulation, is detailed in Chapter 3. In the case of a structurally linear analysis, this
derivative simply reduces to the structural stiffness matrix Ks.

The derivative of the internal load vector w.r.t. displacement follows from appolication of the chain
rule, i.e.

∂f ext

∂u
=

∂f ext

∂x

∂x

∂u
(4.17)

where x is the current coordinates of all the nodes within the mesh of the system. This includes
both the structural mesh and the electrostatic mesh, i.e.

x = [xs, xe]
T (4.18)

where xs represents the current coordinates of the nodes in the structural mesh and xe represents
the current coordinates of the nodes in the electrostatic mesh. This gradient is computed for each
element, and assembled in the usual manner to provide the total gradient.

The two required terms ∂f ext
∂x

and ∂x
∂u

are now discussed in detail, at element level.

First, the term ∂{fext}
∂{x} is considered. From (4.10) and (4.15), we get

∂{fext}
∂{x} = [M ]

∂[Te]

∂{x}{n}+ [M ] [Te]
∂{n}
∂{x} . (4.19)

∂[Te]
∂{x} follows from the chain rule of differentiation, to get

∂[Te]

∂{x} =
∂[Te]

∂{e}
∂{e}
∂{x} =

∂[Tex ]

∂ex

∂ex

∂{x} +
∂[Te]

∂ey

∂ey

∂{x} . (4.20)

∂[Te]
∂{e} follows from direct differentiation of (4.9):

∂[Te]

∂ex

= ε0

[
ex ey

ey −ex

]
and

∂[Te]

∂ey

= ε0

[ −ey ex

ex ey

]
. (4.21)

From the definition of the electrostatic field in (4.8), it is found that

∂{e}
∂{x} =

∂[Bx]

∂{x} {V }. (4.22)
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The derivative of the kinematic matrix [Bx] with respect to the current coordinates {x} is given in
Appendix B.

The normal on an edge of a 2-D element is defined as:

{n} =
1

Le

{
∆y

−∆x

}
(4.23)

where ∆y and ∆x are the differences of the coordinates of the nodes connecting the edge of
the element, and Le =

√
∆x2 + ∆y2 is the length of the element edge. Therefore, ∂{n}

∂{x} can be
computed, using the chain rule.

All the terms required in (4.19) have now been discussed. We now turn our attention to the com-
putation of ∂x

∂u
, which will complete the gradient computation in (4.17).

From (4.18), we have
∂{x}
∂{u} =

∂ [{xs}, {xe}]T
∂{u} (4.24)

with
{xs} = {xs0}+ {u} (4.25)

{xe} = {xe0}+ {w} (4.26)

where {xs0}represents the original coordinates of the structural nodes and {xe0} represents the
original coordinates of the structural nodes, which are both constant. Therefore

∂{xs}
∂{u} = [I]. (4.27)

For ∂{xe}
∂{u} , we recall the structured remeshing scheme, in which a fictitious linear elastic problem

is solved. The resulting linear system of equations from (4.3) is partitioned in the usual manner,
in order to apply the known displacement boundary conditions. In this case, the displacements are
known all along the interface with the structural mesh, and unknown in the interior of the electrical
mesh. This is expressed in matrix form as:

[
Kfss Kfse

Kfes Kfee

]{ {ws}
{we}

}
=

{ {g}
{0}

}
, (4.28)

where the electrical mesh displacement is partitioned into those nodes which are on the common
interface with the structure ({ws}), and those nodes that are not common to the structural mesh
({we}). No external loads are applied on the fictitious elastic domain, hence the external applied
loads are zero. The reaction forces at the electrical/structural interface, denoted {g} in (4.28), is
not required in any subsequent calculations, and therefore never computed.

Note that {ws} = {ub}, where {ub} is the displacements of the structure on the common interface.
Therefore, once {ub} is known, the new configuration of the electrostatic mesh can be found. {we}
is the unknown displacement of the electrostatic mesh, which depends on {ws}.

By solving (4.28), we get

{we} = −[K−1
fee

][Kfes ]{ws} = −[K−1
fee

][Kfes ]{ub} (4.29)
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Since {xe} = [{xes}, {xee}]T , (4.26) can now be split into the two equations

{xes} = {xe0s}+ {ws} (4.30)
{xee} = {xe0e}+ {we}. (4.31)

Therefore the derivative of the coordinates of the nodes in the electrostatic mesh with respect to
the structural displacement can be found as

∂{xe}
∂{u} =

[
∂{xee}
∂{ub} ,

∂{xes}
∂{ub}

]
= [−K−1

fee
Kfes , I] (4.32)

Now, with all the derivative terms expressed analytically, the gradient of the structural residual
with respect to displacement, ∂Rs

∂u
, can be computed.

The gradient of the structural residual with respect to voltage

Direct differentiation of (4.1) w.r.t. voltage gives

∂Rs

∂V
= −∂f ext

∂V
. (4.33)

Recall that each element along the structural/electrical interface contributes to the force f ext. Sim-
ilarly, the above gradient is simply assembled from these element contributions.

From (4.10) and (4.15) it follows that

∂{fext}
∂{V } = [M ]

∂[Te]

∂{V }{n} (4.34)

Application of the chain rule to (4.9) gives

∂[Te]

∂{V } =
∂[Te]

∂{e}
∂{e}
∂{V } =

∂[Te]

∂ex

⊗ ∂ex

∂{V } +
∂[Te]

∂ey

⊗ ∂ey

∂{V } , (4.35)

where ∂[Te]
∂{e} can be found from (4.21). Also, from (4.8) is follows that

∂{e}
∂{V } = [Bx]. (4.36)

In all cases of interest, two of the four nodal voltages per element are known. Consider the 4 noded
electrostatic element that has a common edge with the structural mesh, as shown in Figure 4.2.
Notice that the voltage of nodes 2 and 3 is fixed, since the applied voltage on the structure remains
constant, and only the voltage of nodes 1 and 4 is allowed to change. Since we are only interested
in computing the gradient of the electrostatic force with respect to the unknown voltages, only that
part of the above computation associated with the two unknown nodal voltages are assembled into
the global gradient.
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4.3.3 The electrostatic residual

We now provide the details for the computation of the electrostatic residual in (4.2). The permittiv-
ity matrix [Ke] is assembled from element contributions, where each element’s permittivity matrix
is computed as

[Ke] =

∫

Ω

[Bx]
T ε0[Bx]dΩ. (4.37)

As noted before, [Bx] contains the spatial gradients of the voltage interpolation functions, and ε0

is the permittivity of the free space.

In the cases we consider, the charge density {q} in the free space is zero, and non-zero at the
locations where the voltages are prescribed (see Figure 4.1). Again, we partition the electrostatic
residual according to the unknown (subscript u) and known (subscript k) voltages, to obtain the
system [

Kekk
Keku

Keuk
Keuu

]{ {Vk}
{Vu}

}
=

{ {qk}
{0}

}
. (4.38)

Since the charge density at nodes with known voltage (similar to reaction forces in the structural
residual) is of no concern, we only consider the electrostatic residual at the nodes of unknown
voltage:

{Re} = [Keuk
]{Vk}+ [Keuu ]{Vu} = {0}. (4.39)

4.3.4 Gradients of the electrostatic residual

Gradient of the electrostatic residual with respect to displacement

Since the electrostatic mesh is updated with the electrostatic mesh displacement after every itera-
tion, the permittivity matrix, which is a function of the nodal coordinates, is no longer a constant.
Hence, the gradient of the electrostatic residual with respect to the displacement becomes

∂{Re}
∂{u} =

∂[Keuk
]

∂{u} {Vk}+
∂[Keuu ]

∂{u} {Vu}

=
∂[Keuk

]

∂{xe}
∂{xe}
∂{u} {Vk}+

∂[Keuu ]

∂{xe}
∂{xe}
∂{u} {Vu}.

(4.40)

At the element level, numerical integration is used to compute (4.37), and the gradient ∂[Ke]
∂{x} is

found as

∂[Ke]

∂{xe} =
∑
GP

(
∂[Be]

T

∂{xe} ε0[Be] det(j)+ [Be]
T ε0

∂[Be]

∂{xe} det(j)+ [Be]
T ε0[Be]

∂ det(j)

∂{xe} )WGP . (4.41)

In the above, we explicitly indicate summation over the number of Gauss points GP , and j refers
to the element Jacobian. The term ∂{xe}

∂{u} is the same as described in (4.32) and the gradient of the

determation of Jacobian ∂ det(j)
∂{xe} is given in Appendix B.
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Gradient of electrostatic residual with respect to voltage

From (4.39), the gradient is found to be

∂{Re}
∂{Vu} = [Keuu ] (4.42)

4.3.5 Remark

All four gradients involved in (4.5) are derived analytically, to ensure that the Newton’s method
can be implemented effectively and efficiently. Note however that the elemental integrations are
done numerically; this is efficient, and prevents cumbersome derivations for distorted elements.

4.4 Introduction to other algorithms

Besides Newton’s method with analytical gradients, as derived in the foregoing, there are a few
other methods or algorithms can may be used to solve our nonlinear coupled system. We will now
compare them with the Newton-Raphson method, using the analytical gradients.

4.4.1 Relaxation scheme

A simple black-box approach for the coupled electromechanical analysis is the Gauss-Seidel re-
laxation algorithm [51]. This scheme is a simple gradient free iterative method that repeatedly
calculates the residuals back and forth, until a converged solution is obtained. Due to the simplic-
ity of the scheme, it can be implemented quickly and easily to solve coupled problems.

However, as we will show in the results later, this method requires a large number of iterations
to converge when the coupling between the two fields is ‘strong’. The method may even fail to
converge in the vicinity of the pull-in stage, e.g. see Reference [45]. This scheme makes use of the
following update equations:

V i = Re(u
k) (4.43)

uk+1 = Rs(V
i) (4.44)

4.4.2 Newton’s method using finite difference gradients

Instead of using analytical gradients, the finite difference method can also be used to generate
approximate gradients. But, it is clear that the computational cost is increased significantly, since
many more function evaluations are needed.

Additionally, finite difference gradients are approximate, and the sensitivities of the residual de-
pend on the size of the perturbation used in the approximation. In the comparison in this chapter,
the forward finite different method is used:

∂R

∂u
=

R(u + ∆u)−R(u)

∆u
(4.45)
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4.4.3 Nested Newton iteration

Instead of solving both independent variables u and V simultaneously, we may choose to regard
one of the independent variables as a function of the other. This results in a Newton’s method that
has two nested iterative loops, one for each of the variables, as described in [52]. This method
can be beneficial if one of the variables has significantly more degrees of freedom than the other.
The outer loop, which is iterated fewer times, is used to compute the system with more degrees
of freedom, while the inner loop, which is iterated more times, computes the system with fewer
degrees of freedom. An example being a structural mesh that has many more degrees of freedom
than an air space mesh; this is in fact often the case.

We therefore choose to solve the structural displacement in the outer loop. The voltage is now no
longer an independent variable, but a function of the displacement, i.e. V = V (u). The structural
residual is again solved using Newton’s method:

[
∂Rs

∂u
(ui, V (ui)) +

∂Rs

∂V
(ui,V (ui))

dV

du
(ui)

]
∆u = −Rs(u

i,V (ui)). (4.46)

The calculation of V (u)i is performed in the inner loop by solving the electrostatic residual equa-
tion using the Newton-Raphson method (with the current displacement ui fixed):

∂Re

∂V
(ui,V j(ui))∆V = −Re(u

i,V j(ui)) (4.47)

V j+1(ui) = V j(ui) + ∆V . (4.48)

In the general case, the above subiterations are repeated in the inner loop until a converged solution
of V (ui) is reached. However, for our coupled system, the electrical residual Re is a linear
function of the voltage V . Furthermore, the gradient of the electrical residual with respect to the
voltage, given by (4.42), is only a function of u. Hence, (4.47) is a linear function in V and the
exact solution is obtained in a single iteration.

Once V (ui) is determined, the derivative dV
du

(ui) is obtained by differentiating the electrostatic
residual equation:

∂Re

∂u
(ui,V (ui)) +

∂Re

∂V
(ui,V (ui))

dV

du
(ui) = 0 (4.49)

dV
du

(ui) is solved from the linear system of equations:

∂Re

∂V
(ui,V (ui))

dV

du
(ui) = −∂Re

∂u
(ui,V (ui)), (4.50)

where the matrix ∂Re

∂V
is already available in factored form, since this is required to solve the linear

system in (4.47).

Once V (ui) and dV
du

(ui) are computed, the process proceeds to the outer loop. The Newton step
for the outer loop is computed from (4.46), while the displacement is updated from

ui+1 = ui + ∆u. (4.51)

Note that the nested Newton-Raphson method requires no additional gradients as compared to the
traditional method. The gradients ∂Rs

∂u
and ∂Rs

∂V
in (4.46), and the gradients ∂Re

∂u
and ∂Re

∂V
in (4.50)

are all required in the traditional method, and their calculation have been discussed in the previous
sections.
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4.5 Numerical results

The foregoing formulation was implemented in Matlab [53]. Although not computationally effi-
cient, development time is minimized and comparisons can be made between alternative solution
strategies. All simulations were performed on a Pentium P4 2.8GHz CPU with 512 RAM personal
computer.

4.5.1 Geometrically linear analysis

For the geometrically linear coupled analysis, a cantilever beam over ground example is presented
here. The beam length is 500 µm and the width is 14.35 µm, while the bottom air gap is 1 µm.
Young’s modulus E is taken as 169 GPa, and Poisson’s ratio ν is set to 0.3. The only boundary
conditions for the electrostatic problem is the non-zero prescribed voltage for the beam surface, and
the zero prescribed voltage for the bottom electrode. It was verified numerically that the length of
the bottom electrode (chosen as 550 µm), and the size of the air gap at the top of the beam (chosen
as 1 µm) does not affect the results.

Numerical verification of gradients

In order to numerically verify that all the gradient calculations are correct, the norm of the total
system residual, displacement update vector and voltage update vector is summarized in Table 4.1.
This particular problem was analyzed with an uniform beam mesh of 280 × 8 elements, and 8
through-thickness elements was used to model both the bottom and top air gaps. The applied beam
voltage is 16 V. It is evident from the values in Table 4.1 that quadratic convergence is obtained, a
good indication that the analytical gradients were correctly derived and implemented.

Iteration # ‖Ri‖/‖R1‖ ‖∆u‖ ‖∆V ‖
1 1.0000 6.6012 5.2615×10−1

2 1.0926×10−1 1.2873 3.1181×10−1

3 8.9703×10−3 1.1951×10−1 2.4498×10−2

4 1.3141×10−4 1.0860×10−3 2.3049×10−4

5 9.2402×10−7 1.3986×10−6 1.8556×10−7

Table 4.1: Convergence history for geometrically linear coupled problem

Mesh refinement study

To illustrate that the solution to the coupled problem converges, a mesh refinement study is per-
formed. The above problem is solved for a series of meshes. The beam tip vertical displacement is
summarized in Table 4.2, for an applied beam voltage of 16 V. To depict the mesh clearly, a coarse
mesh is shown in Figure 4.4. (This figure is not drawn to scale.)
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Beam mesh # Layers per air gap Vertical displacement
70× 2 2 -0.314306
140× 4 4 -0.314975
280× 8 8 -0.315628

Table 4.2: Beam tip vertical displacement versus mesh refinement.

0 100 200 300 400 500 600
−20

−15

−10

−5

0

5

10

15

20

 

 

0 2 4 6 8 10 12 14 16

Beam mesh

Electrostatic mesh

Figure 4.4: Coarse deformed mesh of the system (not drawn to scale). The beam mesh uses
30× 2 elements, and 2 through-thickness elements are used for both air gaps. Grayscale contours
represent the voltage values in the electrostatic mesh.

Tip deflection

Now that the numerical implementation of the formulation has been verified, the code is used to
compute the voltage-deflection characteristic of the device. For all results in this section, a 140×4
beam mesh and a 4 layer air mesh for both gaps are used.

According to [54], the pull-in voltage for a cantilever beam is approximately calculated as

VPI =

√
8Keffd3

0

18.2ε0lbeff

(4.52)

with

Keff =
2

3

Ebh3

l3
3

8− 6λr + λ3
r

(4.53)

and

beff = b

(
1 + 0.65

(1− β)d0

b

)
. (4.54)

The loading factor λr = 1, b is the width of the beam, d0 is the initial gap between the beam and
the electrode, l is the length of the beam, h is the height of the beam, β is the normalized maximum

 
 
 



www.manaraa.com

CHAPTER 4. FE MODELING OF MEMS, USING ANALYTICAL GRADIENTS 43

deflection of the beam and is suggested to be 0.45 for this cantilever beam. The analytical pull-in
voltage is calculated to be 16.2 volt.

As shown in Figure 4.5, 16.2 volt falls almost exactly between the deflection curves of plane
strain and plane stress calculated using Newton’s method with analytical gradients. This is to be
expected, since the actual 3-D beam will be softer then the 2-D plane strain beam, but harder than
the 2-D plane stress beam. The numerical values of the vertical tip deflection can be found in
Table 4.3.

0 2 4 6 8 10 12 14 16 18
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Bias (volts)

B
ea

m
 ti

p 
de

fle
ct

io
n 

(u
m

)

Plane strain
Plane stress

Figure 4.5: Tip deflection of the beam.

Plane strain Plane stress
Bias (Volts) Deflection ( µm) Bias (Volts) Deflection ( µm)

2 -0.003036 2 -0.00334
4 -0.012292 4 -0.013542
6 -0.028254 6 -0.031197
8 -0.051869 8 -0.057490

10 -0.084873 10 -0.094656
12 -0.130622 12 -0.147298
14 -0.196931 14 -0.227699
15 -0.244411 15 -0.291988
16 -0.314975 15.5 -0.342088

16.5 -0.379054 15.7 -0.372452
16.6 -0.403065 15.8 -0.394450

16.64 -0.418137 15.85 -0.410437
16.65 -0.423444 15.87 -0.419455
16.66 -0.430464 15.88 -0.425402

Table 4.3: Tip deflection for plane strain and plane stress conditions
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Comparison with the relaxation method

The performance of the relaxation and Newton algorithms is summarized in Table 4.4. It is noticed
that the Newton algorithm takes fewer iterations and is much faster than the relaxation algorithm
for the tightly coupled cases (i.e. near the pull-in voltage). To further highlight the sensitivity of
the relaxation method near the pull-in voltage, Figure 4.6 depicts the residual norm convergence
for an applied voltage of 16.65 V and 16.66 V, which results in an iteration increase form 74 to 95.

Bias (volts) CPU (s) Number of iterations
Relaxation Newton Relaxation Newton

2 16.7 46.9 3 2
4 17.0 49.3 3 2
6 22.3 68.7 4 3
8 27.9 69.6 5 3

10 33.2 68.4 6 3
12 33.5 68.9 7 3
14 55.2 91.2 10 4
15 75.8 91.4 12 4
16 107.0 114.9 19 5

16.5 185.1 137.8 33 6
16.6 255.4 148.4 46 6

16.64 368.6 137.2 64 6
16.65 401.1 160.4 74 7
16.66 528.4 160.5 95 7

Table 4.4: Comparison of relaxation and Newton algorithm based on the number of iterations to
convergence, and total CPU time.
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Figure 4.6: Convergence of the residual norm for both the relaxation and Newton algorithms, with
an applied bias of (a) 16.65 V and (b) 16.66 V.
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Comparison with nested Newton’s method

The advantage of the nested Newton’s method is shown in Table 4.5. As the beam mesh degrees of
freedom increase, while the air mesh degrees of freedom remain relatively unchanged, the compu-
tational time is significantly reduced when using the nested Newton’s method. This is important,
since accuracy considerations require a refined beam mesh, while the air mesh can be left relatively
coarse.

Number of degrees of freedom CPU (s)
Beam Air Single iteration Nested iteration
1410 1595 114.9 120.9
2898 1889 190.5 158.9
4706 1403 156.4 135.2
6432 1300 463.7 144.4
7258 1255 596.3 142.2
8442 1725 884.2 206.0

Table 4.5: Comparison of CPU times for a single Newton iteration and a nested Newton iteration
algorithm with an applied bias of 16 V

Comparison with finite difference gradient

The computational time increases significantly as the number of system degrees of freedom in-
crease when finite differences are used to approximate the gradients, since the number of required
system residual evaluations is proportional to the number of degrees of freedom. Table 4.6 shows
the comparison between CPU times required by Newton’s method using the analytical gradient,
compared to Newton’s method using finite difference gradients.

Number of degree of freedom CPU (s)
Finite difference gradient Analytical gradient

267 17.8 5.3
394 386.5 7.83
760 1677.7 16.5

1058 3345.1 23.7

Table 4.6: Comparison of CPU times for analytical gradients and finite difference gradients with
an applied bias of 10 V.

4.5.2 Geometrically nonlinear analysis

A typical application of geometrically nonlinear beams is large stroke actuators, in which the
beams are stiffened due to large deflection, and fixed-fixed beam devices (clamped membranes), in
which the beam starts to behave nonlinearly at very small displacements due to large axial stresses
[55]. In both cases, geometric nonlinear effects have to be taken into account during simulations.
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Geometrically nonlinear cantilever microbeam simulations often require unstructured remeshing,
since the elements are distorted due to the large deflection, as shown in Figure 4.7. (The dimensions
of this beam are the same as the one used in Reference [47], and are outside the scope of this
thesis. However, some numerical results for the large deflection of a cantilever beam can be found
in [47].) Note that during Newton iterations of a nonlinear system, the sign of the determinant of
the element Jacobian, det(J), is checked. A negative det(J) is an indication of element inversion;
this requires a reduction in the Newton step size.
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Figure 4.7: Deformation of the cantilever beam and the mesh. The grayscale contours represent
the nodal voltages in the electrostatic mesh.

A fixed-fixed beam is now selected to illustrate the effect of geometric nonlinearity in coupled
electro-mechanical systems. The fixed-fixed beam is also widely used in MEMS, as shown in
Figure 4.8 and Figure 4.9. The geometrically nonlinear mixed assumed stress element described
in the previous chapter is used to model the beam, and analytical gradients are again used when
solving the coupled system.

Figure 4.8: Schematic views of fixed-fixed beam microstructure used as pressure sensor [56].
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Figure 4.9: Basic structure of RF switch [57, 58].

Theoretical example: beam number 1

The major difference between linear and nonlinear models can be seen clearly as the deflection of
the beam increases, which requires a high applied bias. In order to show the ability of the proposed
element and the algorithm in modeling a geometrically nonlinear electrostatic-mechanical coupled
system, an unrealistic high voltage is applied to take the system deep into its nonlinear zone. In
this example, the beam is of unit height, while the length is 100 µm. The gap between the beam
and the electrode is 100 µm; the material parameters are E = 70 GPa and ν = 0.3. The beam
mesh is discretized with a 2× 20 mesh, using plane stress conditions. The air mesh, which models
the bottom air gap, has 4 layers. No top air gap is present.

In Figure 4.10, the deformations of the beam for both a linear and a nonlinear analysis are shown.
It is found that the linear beam deforms much more than the nonlinear beam, even when the applied
bias is relatively low.
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Figure 4.10: Deformation of beam number 1, using a geometrically (a) linear and
(b) nonlinear formulation.

Also clearly shown in Table 4.7 and Figure 4.11 is that nonlinear stiffening contributes signifi-
cantly from the early stages of deformation. It is noted that the linear model cannot handle high
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applied voltages, as this passes the model’s pull-in limit, while the stiffened nonlinear model can
accommodate much higher voltage loads.

Bias (volts) Deflection
Linear Nonlinear

1000 -0.01945 -0.01944
2000 -0.07792 -0.07758
4000 -0.3137 -0.2951
8000 -1.289 -0.8442
16000 -5.885 -1.704
18000 -7.907 -1.885
20000 -10.574 -2.058
22000 -14.358 -2.223
24000 -20.957 -2.383
24800 -27.232 -2.446
50000 -4.161

100000 -6.941

Table 4.7: Beam number 1 deflection versus applied bias for both geometrically
linear and nonlinear cases.
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Figure 4.11: Load-deflection curve of beam number 1 for geometrically linear and
nonlinear analysis.

In order to study the convergence of the method, a mesh refinement convergence test is performed.
The result shows that the displacement converges as the number of degrees of freedom increases,
as depicted in Figure 4.12.
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Figure 4.12: Convergence of the midpoint vertical displacement, for beam number 1.

Realistic example: beam number 2

The same beam as in the previous example is now studied, but the gap is reduced to 10 µm. The
beam mesh is 8× 80 and the air mesh has 16 layers.

As is clearly shown in Table 4.8 and Figure 4.13, nonlinear stiffening delays the pull-in stage
significantly. When the linear model starts to get to the highly nonlinear pull-in zone at around
960 V, the geometrically nonlinear model, which undergoes axial stress stiffening, is still well
within its nearly linear responding zone.

Bias (volts) Deflection
Linear Nonlinear

100 -0.0195 -0.0195
200 -0.07874 -0.07839
400 -0.328 -0.3062
600 -0.7986 -0.6109
800 -1.655 -0.9109
850 -1.994 -0.9824
900 -2.447 -1.052
950 -3.226 -1.121
960 -3.562 -1.135

Table 4.8: Beam number 2 deflection versus loads for both linear and nonlinear cases.

A mesh refinement convergence test is again performed, and the result shows that the displacement
converges as the number of degrees of freedom increases (Figure 4.14). The deformed shape of an
intermediate mesh (4 × 40), together with the deformed electrostatic mesh (4 × 40), is shown in
Figure 4.15.
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Figure 4.13: Load-deflection curve of beam number 2 for linear and nonlinear analysis.
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Figure 4.14: Fixed-fixed beam number 2 problem: Convergence of the middle point
vertical displacement.

4.6 Conclusions

In this chapter, Newton’s method with analytically derived gradients was used to solve an elec-
tromechanically coupled system. It was shown that Newton’s method with analytical gradients
converges very rapidly, even for the tightly coupled stage between the mechanical and electrical
domains. In this strongly coupled regime, the number of iterations required for convergence is
an order less for Newton’s method, as compared to the relaxation scheme. With a nested Newton
method, the computational process can be even more efficient. The computational time is also
significantly reduced through the use of analytical gradients rather than finite difference gradients.
When geometrically nonlinear mixed assumed stress elements are used to model the structure, the
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Figure 4.15: (a) Original and deformed structural mesh and (b) deformed electrostatic mesh of
beam number 2, subjected to a bias of 3000 V. The grayscale contours in (b) represent the voltages.

geometric nonlinearity of the coupled system can be well modeled and analyzed using the same
analytical gradients. Newton’s method with analytically derived gradients can be extended and
modified for 3-D or other coupled fields in MEMS.
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Chapter 5

Conclusions and Recommendations

5.1 General remarks

In this thesis, some fundamental issues involved in the simulation and analysis of MEMS were
studied, which are two critical aspects when designing MEMS: the effect of element formulation
(type), and the effects of the algorithm used to solve the system of coupled MEMS equations.

In order to accurately model and predict the characteristics of an electrostatic-mechanical coupled
system, a geometrically nonlinear version of the popular 5β assumed stress element was proposed.
After construction of the FEM model with this nonlinear mixed element, the coupled residuals are
solved using Newton’s method, which in turn uses analytical gradients.

5.2 Conclusions

The following conclusions are drawn from this study:

1. FEM is still an effective method to analyze the behavior of MEMS, if elements of adequate
accuracy are used.

2. The geometrically nonlinear mixed assumed stress element proposed for use in MEMS is
consistent and rank sufficient.

3. The element uses only linear interpolation fields for the elemental displacement fields, with
only four nodes per element.

4. In the absence of follower loads, the consistent tangent for the geometrically nonlinear sys-
tem is symmetric, which allows it to be solved very efficiently.

5. In the presence of singularities, the accuracy of the proposed nonlinear mixed element is
comparable to the well-known Q8 element.

6. Although inversion of the partition matrix is required for the proposed element, the matrix
remains constant and it can therefore be computed efficiently.
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7. Numerical results confirm that the element is an attractive choice for geometrically nonlinear
analyses, when reducing the computational cost and accuracy are both important.

8. The quadratic convergence rate of the Newton-Raphson algorithm makes it an attractive
method for solving the nonlinear system of equations obtained when modeling the electrostatic-
mechanical coupled system with FEM.

9. The derived analytical gradients significantly reduce the computational cost, since the most
critical and costly step in the Newton iteration is the gradient evaluation process.

10. The accurate analytical gradients derived ensure rapid convergence of Newton’s method, as
demonstrated using numerical results.

5.3 Recommendations for future work

A few recommendations are made for future consideration:

1. Other meshless modeling techniques such as the finite cloud method (FCM) and the bound-
ary cloud method (BCM) [59, 60] may be studied as a comparison with the traditional FEM
modeling.

2. Other algorithmic options, such as a multilevel Newton method [45, 61] for solving nonlinear
system of equations can be studied. (Computational cost and convergence rate are the two
most important criteria for evaluation.)

3. Since the frequency response is an important design parameter in some MEMS, dynamic
modeling may be developed.

4. Both the geometrically nonlinear mixed assumed stress element and the analytical gradients
developed could be extended to 3-D modeling.

5. A more robust method of developing the analytical gradient should be proposed so that it
can be easily extended to solve other mixed domain systems.

6. A completely unstructured remeshing scheme could be used in association with the proposed
element for analyzing large deformation problems.

7. A comparative study can be done regarding the choice of different interpolations in the as-
sumed stress interpolation matrix P of the proposed nonlinear element.
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Appendix A

Geometrically nonlinear mixed assumed
stress element

Computation of the matrices [BX ], [Bx] and the derivative d[Bx]
dUi

are now outlined. For our 4 node
quadrilateral element with bilinear interpolation, the shape functions are given by

N1 =
1

4
(1− ξ)(1− η), (A.1)

N2 =
1

4
(1 + ξ)(1− η), (A.2)

N3 =
1

4
(1 + ξ)(1 + η), (A.3)

N4 =
1

4
(1− ξ)(1 + η). (A.4)

Using the isoparametric formulation, these shape functions are used to interpolate both the dis-
placement field, as well as the geometry i.e.

u = [N ]{U}, X = [N ]{X}, and x = [N ]{x}. (A.5)

The element Jacobian J is defined as

J =

[ dX
dξ

dY
dξ

dX
dη

dY
dη

]
=

[
J11 J12

J21 J22

]
. (A.6)

For an isoparametric formulation, the Jacobian is conveniently computed in vector form {J}, using
the relation

{J} =





J11

J21

J12

J22





= [D]{X}, (A.7)

where the matrix [D] contains the derivatives of the shape functions N w.r.t. natural coordinates ξ
and η

[D] =




N1,ξ 0 N2,ξ 0 N3,ξ 0 N4,ξ 0
N1,η 0 N2,η 0 N3,η 0 N4,η 0

0 N1,ξ 0 N2,ξ 0 N3,ξ 0 N4,ξ

0 N1,η 0 N2,η 0 N3,η 0 N4,η


 , (A.8)
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and the vector {X} contains the reference (undeformed) coordinates of the element nodes, i.e.

{X} = [X1 Y1 X2 Y2 X3 Y3 X4 Y4]
T. (A.9)

A simple application of the chain rule of differentiation shows that the Jacobian relates the gradi-
ents w.r.t. the natural coordinates to the gradients w.r.t. the reference coordinates :

{
d( )
dξ
d( )
dη

}
= [J ]

{
d( )
dX
d( )
dY

}
. (A.10)

Hence, the spatial gradients of any quantity interpolated by the shape functions are computed from
{

d( )
dX
d( )
dY

}
= [Ψ]

{
d( )
dξ
d( )
dη

}
, (A.11)

where [Ψ] is the inverse of the Jacobian matrix:

[Ψ] =

[
Ψ11 Ψ12

Ψ21 Ψ22

]
= [J ]−1 =

1

det(J)

[
J22 −J12

−J21 J11

]
. (A.12)

The matrix [BX ], which is used to compute the deformation gradient vector {F} in (3.44), is then
given by

[BX ]=




Ψ11 Ψ12 0 0
0 0 Ψ21 Ψ22

Ψ21 Ψ22 0 0
0 0 Ψ11 Ψ12


[D]. (A.13)

The matrix [Bx] is computed similarly to [BX ]; this time using the current coordinates {x} instead
of the reference coordinates {X}.

To compute the gradients w.r.t. the current coordinates x, we require the element Jacobian j, which
is defined as

j =

[
dx
dξ

dy
dξ

dx
dη

dy
dη

]
=

[
j11 j12

j21 j22

]
. (A.14)

Application of the chain rule results in
j = JF T. (A.15)

The inverse of the Jacobian j is denoted ψ, and the matrix [Bx] is given by

[Bx]=




ψ11 ψ12 0 0
0 0 ψ21 ψ22

ψ21 ψ22 ψ11 ψ12


 [D]. (A.16)

The derivatives of the matrix [Bx] w.r.t. nodal displacements are given by

d[Bx]

dUi

=




dψ11

dUi

dψ12

dUi
0 0

0 0 dψ21

dUi

dψ22

dUi
dψ21

dUi

dψ22

dUi

dψ11

dUi

dψ12

dUi


[D], (A.17)
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which requires the derivative of the inverse of the Jacobian dψ
dUi

. This is computed as

dψ

dUi

=
dj−1

dUi

= −j−1 dj

dUi

j−1, (A.18)

where the derivative of the Jacobian j w.r.t. nodal displacements follows by differentiating (A.15):

dj

dUi

= J
dF

dUi

T

. (A.19)

The derivative d{F}
d{Ui} is simply [BX ], which follows directly from (3.44).
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Appendix B

Finite element analysis of MEMS using
analytical gradient

The derivative of the kinematic matrix [Bx] with respect to the nodal coordinates {x} follows
exactly the same procedure as described in Appendix A, where the derivative of [Bx] with respect
to the displacements {U} is detailed.

The derivative of the determation of a matrix A that depends on a scalar x is given by

d det(A(x))

dx
= det(A(x))trace

(
dA(x)

dx
A(x)−1

)
. (B.1)

This reuslts is required in (4.41) to compute ∂ det(j)
∂{xe} .

For linear interpolation along any element edge, the interpolation matrix M , required in (4.15), is
given by

[M ] =
Lelement

6




2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2


 . (B.2)
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